MEWUJUDKAN TNI ANGKATAN LAUT YANG KUAT DAN DISEGANI

Rabu, 27 Juni 2012

Phalanx CIWS

From Wikipedia,

Phalanx CIWS
Phalanx CIWS test fire - 081107-N-5416W-003.jpg
Phalanx (Block 1A) live fire test, USS Monterey (CG-61)
Type Close-in weapon system
Place of origin United States
Service history
In service 1980-Present
Used by See operators
Wars Gulf War
Production history
Designer General Dynamics (now Raytheon)
Manufacturer General Dynamics (now Raytheon)
Produced 1978
Specifications
Weight 12,500 lb (5,700 kg), later models 13,600 lb (6,200 kg)
Barrel length • Block 0 & 1 (L76 gun barrel): 1,520 mm (59.8 in)
• Block 1B (L99 gun barrel): 1,981 mm (78.0 in)
Height 4.7 m (15 ft 5.0 in)
Crew Automated, with human oversight

Shell • Naval: Armor-piercing tungsten penetrator rounds with discarding sabots.
• Land: High-Explosive Incendiary Tracer, Self-Destruct.
Caliber 20×102mm
Barrels 6-barrel (progressive RH parabolic twist, 9 grooves)
Elevation • Block 0: -10°/+80°
• Block 1: -20°/+80°
(Rate of elevation: 86°/sec for Block 0/1)
• Block 1B: -25°/+85°
(Rate of elevation: 115°/sec)
Traverse • 150° from either side of centerline
(Rate of traverse: 100°/sec for Block 0 & 1, 116°/sec for Block 1B)
Rate of fire 3,000-4,500 rounds/minute [Selectable] (50-75 rounds/second).
Muzzle velocity 1,100 m/s (3,600 ft/s)
Effective range 3.6 km (2.2 mi)
Maximum range Classified

Main
armament
20 mm (0.79 in) M61 Vulcan 6-barreled gatling cannon[4]
Guidance
system
Ku-band radar and FLIR[5]
The Phalanx CIWS is an anti-ship missile anti-ship missile defense system. It is a close-in weapon system (CIWS) and was designed and manufactured by the General Dynamics Corporation, Pomona Division (now a part of Raytheon). Consisting of a radar-guided 20mm Gatling gun mounted on a swiveling base, the Phalanx is used by the United States Navy on every class of surface combat ship, by the United States Coast Guard aboard its Hamilton-class and Legend class cutters and the navies of 23 allied nations.[citation needed]
A land based variant known as C-RAM has recently been deployed in a short range missile defense role, to counter incoming rockets and artillery fire.
Because of their distinctive barrel-shaped radome and their automated nature of operation, Phalanx CIWS units are sometimes nicknamed "R2-D2" after the famous droid from Star Wars,[ and in the Royal Navy as Daleks, after the aliens from Doctor Who.

Design

The basis of the system is the 20 mm M61 Vulcan Gatling gun autocannon, used since the 1960s by the United States military in nearly all fighter aircraft (and one land mounting, the M163 VADS), linked to a Ku-band radar system for acquiring and tracking targets. This proven system was combined with a purpose-made mounting, capable of fast elevation and traverse speeds, to track incoming targets. An entirely self-contained unit, the mounting houses the gun, an automated fire control system and all other major components, enabling it to automatically search for, detect, track, engage and confirm kills using its computer-controlled radar system. Due to this self-contained nature, Phalanx is ideal for support ships which lack integrated targeting systems and generally have limited sensors. The entire unit has a mass between 5,500 and 6,100 kg (12,400 to 13,500 lb).

 

 

 

 

 

 

 

 

 

 

 





Comparison of some modern CIWS

Russia AK-630 United States Phalanx CIWS Netherlands Goalkeeper CIWS Italy DARDO
Weight 9,114 kg (20,090 lb) 6,200 kg (14,000 lb) 9,902 kg (21,830 lb) 5,500 kg (12,000 lb)
Armament 30 mm (1.2 in) 6 barreled GSh-6-30 Gatling Gun 20 mm (0.79 in) 6 barreled M61 Vulcan Gatling Gun 30 mm (1.2 in) 7 barreled GAU-8 Gatling Gun 40 mm (1.6 in) 2 barreled Bofors 40 mm
Rate of Fire 5,000 rounds per minute 4,500 rounds per minute 4,200 rounds per minute 600/900 rounds per minute
(effective/ flat-trajectory) Range 4,000 m (13,000 ft) 3,600 m (11,800 ft) 2,000 m (6,600 ft) 4,000 m (13,000 ft)
Ammunition stowage 2,000 rounds 1,550 rounds 1,190 rounds 736 rounds
Muzzle velocity 900 m (3,000 ft) per second 1,100 m (3,600 ft) per second 1,109 m (3,638 ft) per second 1,000 m (3,300 ft) per second
Elevation -12 to +88 degrees -25 to +85 degrees -25 to +85 degrees -13 to +85 degrees
Traverse 360 degrees -150 to +150 degrees 360 degrees 360 degrees

Upgrades

Mk-15 Phalanx CIWS firing upon a surface target during a sinking exercise, 2010.
 
Due to the continuing evolution of both threats and computer technology, the Phalanx system has, like most military systems, been developed through a number of different configurations. The basic (original) style is the Block 0, equipped with first generation solid state electronics and with marginal capability against surface targets. The Block 1 (1988) upgrade offered various improvements in radar, ammunition, rate of fire, increasing engagement elevation to +70 degrees, and computing. These improvements were intended to increase the system's capability against emerging Russian supersonic anti-ship missiles. Block 1A introduced a new computer system to counter more maneuverable targets. The Block 1B PSuM (Phalanx Surface Mode, 1999) adds a forward looking infrared (FLIR) sensor to allow the weapon to be used against surface targets.This addition was developed to provide ship defense against small vessel threats and other "floaters" in littoral waters and to improve the weapon's performance against slower low-flying aircraft. The FLIR's capability is also of use against low-observability missiles and can be linked with the RIM-116 Rolling Airframe Missile (RAM) system to increase RAM engagement range and accuracy. The Block 1B also allows for an operator to visually identify and target threats.
The U.S. is in the process of upgrading all their Phalanx systems to the Block 1B configuration. The Block 1B is also used by other navies such as Canada, Portugal, Japan, Egypt, Bahrain and the UK.
In May 2009 the US Navy awarded a $260 million contract to Raytheon Missile Systems to perform upgrades and other work on the Phalanx. The work is to be completed by September 2012.

Operation

The CIWS is designed to be the last line of defense against anti-ship missiles. Due to its design criteria its effective range is very short relative to the range of modern ASMs, from 1 to 5 nautical miles (9 km). The gun mount moves at a very high speed and with great precision. The system takes minimal inputs from the ship, making it capable of functioning despite potential damage to the ship. The only inputs required for operation are 440 VAC 3 phase at 60Hz and water for electronics cooling. For full operation including some non-essential functions, it also has inputs for true compass ship's heading and 115 V AC for the PASS and tape drive subsystems.

Radar subsystems

The CIWS has two antennas that work together to engage targets. The first antenna, for searching, is located inside the radome on the weapon control group (top of the white-painted portion). The search subsystem provides bearing, range, velocity, heading, and altitude information of potential targets to the CIWS computer. This information is analyzed to determine whether the detected object should be engaged by the CIWS system. Once the computer identifies a valid target (see details below), the mount moves to face the target and then hands the target over to the track antenna. The track antenna is extremely precise, but views a much smaller area. The tracking subsystem observes the target until the computer determines that the probability of a successful hit is maximized and then, depending on the operator conditions, the system will either fire automatically or will recommend fire to the operator. While firing, the system tracks outgoing rounds and 'walks' them onto the target.

 

Gun and ammunition handling system

The Block 0 CIWS mounts (hydraulic driven) fired at a rate of 3,000 rounds per minute and they could only hold 989 rounds in the magazine drum.[4] The Block 1 CIWS mounts (hydraulic) also fired at 3,000 rounds per minute with an extended magazine drum holding 1,550 rounds. The Block 1A and newer (pneumatic driven) CIWS mounts fire at a rate of 4,500 rounds per minute and also had the larger 1,550 round magazine. The velocity of the rounds once fired is approximately 3,600 feet per second (1,100 m/s). The rounds are armor-piercing tungsten penetrator rounds or depleted uranium with discarding sabots. The kinetic projectiles are designed to pierce and explode an incoming missile's warhead. The ammunition handling system has two conveyor belt systems. The first takes the rounds out of the magazine drum and to the gun; the second takes either the empty shells or non-fired rounds and routes them back to the opposite end of the drum.

CIWS contact target identification

The CIWS does not recognize identification friend or foe, also known as IFF. The CIWS has only the data it collects in real time from the radars to decide if the target is a threat and to engage it. A contact has to meet multiple criteria for it to be considered a target. Some of the criteria are listed below.
  1. Is the range of the target increasing or decreasing in relation to the ship? The CIWS search radar will see contacts that are out-bound and discard them. The CIWS will only engage a target if it is approaching the ship.
  2. Is the contact capable of maneuvering to hit the ship? If a contact is not heading directly at the ship, the CIWS looks at its heading in relation to the ship and its velocity. It then decides if the contact can still perform a maneuver to hit the ship.
  3. Is the contact traveling between the minimum and maximum velocities? The CIWS has the ability to engage targets that travel in a wide range of speeds, however it is not an infinitely wide range. The system has a target maximum velocity limit. If a target exceeds this velocity, the CIWS will not engage it. It also has a minimum target velocity limit. Any contact below that velocity will not be engaged by the CIWS. The operator also has the option to adjust the minimum and maximum limits within the limits of the system.

Tidak ada komentar:

Posting Komentar